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- “atheoretical:” unsatisfactory in the long run

- many diagnostic categories are highly heterogeneous

- lacks account of  large-scale comorbidity patterns

DSM taxonomy:

- …

- bottom-up approach, focus on brain circuits 

- extremely patchy coverage (e.g., no mating/sexual behavior)

- still no account of  large-scale comorbidity

The story so far…

Current answer 1: research domain criteria (RDoC)



Current answer 2: Network models
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strength of association between two symptoms connected by an
edge (i.e., zero-order correlation).

In the original article (McNally et al., 2015), Fig. 2 presented an
association graph of these data, depicting zero-order correlations
between pairs of symptoms reaching threshold (i.e., r > 0.3). Here,
Fig. 1,2 presents an association network depicting PCL-C PTSD
symptoms reported by adults reporting histories of childhood
sexual abuse (McNally, 2015). The network is weighted and undi-
rected (i.e., no arrows at the tips of edges, and the threshold for
depiction is r > 0.3. Implementing Fruchterman and Reingold’s
(1991) algorithm, qgraph places nodes with stronger correlations
near the center of the network, and those with weaker correlations
near the outskirts of the network. Strong edges appear between
numbness and feeling distant from others; between hypervigilance
and startle; and between flashbacks and traumatic dreams and
intrusive thoughts about the trauma. Difficulty remembering as-
pects of the abuse (“amnesia”) is least central to the network.

5.2. Partial correlation networks

The ultimate purpose of network analysis is to discern the causal
relations among symptoms, not merely the correlations among
them. As correlations constitute a necessary, but insufficient basis
for causal inference, association networks can count as only the
first step in this process.

Partial correlation networks rectify a limitation integral to as-
sociation networks. For example, in an association network, an
edge connecting symptom X with symptom Y may signify that
activation of X activates Y (or vice versa) or that the association
between X and Y arises partially or entirely from the influence of
other symptoms. Partial correlation networks take us one step
closer to discerning causal relations by computing the partial cor-
relation between symptom X and symptom Yafter adjusting for the
influence of all other symptoms in the network. Accordingly, edges
appearing in an association network that remain after adjustment

are plausible candidates for counting as causal connections.
Network researchers have computed partial correlation net-

works in two ways. Concentration networks depict partial corre-
lations that exceed some specified threshold (e.g., r ! 0.1; Fig. 3 in
McNally et al., 2015). Alternatively, one can run the graphical lasso
(i.e., Least Absolute Shrinkage and Selection Operator) algorithm
(Friedman, Hastie, & Tibshirani, 2010).

Using the R packages qgraph and glasso, I computed a partial
correlation network on PTSD symptoms from survivors of the
Wenchuan earthquake. Applying an L1 penalty, the graphical lasso
estimates a sparse inverse covariance matrix that shrinks small
partial correlations, setting them to zero such that they do not
appear in the final partial correlation network. That is, it eliminates
trivial partial correlations that are likely “false alarms.” Hence, only
the most robust partial correlations remain visible following this
iterative procedure.

Fig. 2 presents a partial correlation network depicting edges that
survived the graphical lasso after appearing in the association
network (Fig. 2 in the original article; McNally et al., 2015). For
example, strong edges remained between hypervigilance and
exaggerated startle responses, and between intrusive thoughts and
traumatic dreams. The analysis also uncovered other associations
less obvious to clinical observation. Strong associations remained
between anger and concentration impairment; emotional numb-
ness and future foreshortening; and loss of interest in previously
enjoyed activities and feeling distant from other people.

5.3. Relative importance networks

Partial correlation networks depict only direct associations be-
tween pairs of symptoms, but the network itself is not directed.
Hence, X could influence Y, Y could influence X, or both.

In a relative importance network, each edge depicts the relative
importance of a symptom as a predictor of another symptom
(Johnson& LeBreton, 2004). Relative importance concerns both the
direct effect of node X on node Y and the effect of node X on node Y
after one has adjusted for all other nodes in the network. These
networks are both weighted and directed. Hence, the graph depicts
both the magnitude of the association and the direction of pre-
diction, with arrows originating from the predictor node and

Fig. 1. Association network (r ! 0.3) depicting zero-order correlations among PTSD symptoms in adults reporting histories of childhood sexual abuse.

2 To obviate reprinting published figures in this article, I computed conventional
networks on new data sets (McNally, 2015) or novel networks on old data sets
(McNally et al., 2015).

R.J. McNally / Behaviour Research and Therapy 86 (2016) 95e10498

McNally, 2016

However, we have noticed that recent studies tend to
lose sight of the fundamentals of medicine, disregard
issues inherent to the traditional concept of psychiatry,
overlook major shortcomings embedded in study
designs, andmake inferences that are difficult towarrant
with current findings. There is a growing concern that
ignoring these pitfalls may halt the progress of network
approach in psychiatry (Wichers et al. 2017). Therefore,
in this paper, by addressing problem areas and discuss-
ingpossible solutions, our hope is to navigate this rapidly
growing field to a more methodologically sound and
reproducible framework – a framework that not only
appreciates the uniqueness of psychiatry, but also posi-
tions itself in the vicinity of the rest of medicine.

Medical disease (lung cancer) v. mental disorder
(depression)

Current research on the network perspective of mental
disorders inadvertently reintroduced the dichotomy of

real disease (medicine) v. mental disorder (psychiatry)
by making a comparison of medical disorders (lung
cancer as a showcase of a ‘true’ distinct disease) with
mental disorders, i.e. Cartesian dualism (Fried, 2015;
McNally, 2016, 2017; Borsboom, 2017). However,
insisting on this polarizing analogy arguably may
bring more harm than good for the laudable efforts
of the network theory. As an example, the radical
shift to descriptive psychiatry and further reification
of the DSM diagnoses in the context of the medical
model may be attributable in part to frustration with
the antecedent prevailing theory (psychoanalysis) that
had turned into a dogma. Opposing camps (biological
v. psychological; genetic brain disease v. socioenviron-
mental impact; psychotherapy v. psychopharmacology,
and so on) often become opinionated in the process
rather than finding peace with each other – slowing
down scientific progress. Therefore, the choice of
this divisive language would better be carefully
re-evaluated.

Inarguably, the machinery of a human is far more
sophisticated and interactive than our utilitarian
approach toward diagnosis in medicine. Therefore,
each and every medical condition, including lung can-
cer, can be better and more realistically conceptualized
using a network model of signs and symptoms (Zhou
et al. 2014). Certainly, a multilayered network diagram
(e.g. genomics, metabolomics, signs and symptoms,
along with enviromics) would be far more superior for
mastering this complex system than a sole network of
symptoms (Fig. 3). Looking at the outermost layer, the
level of signs and symptoms, one can observe that the
manifestation of symptoms evolves over time – akin to
network formation – with some symptoms appearing
early, some of them causally activating other symptoms,
and a feweven building a bridge between symptomnet-
works of other medical conditions leading to comorbid
conditions. From this perspective, applying a network
approach to a longitudinal dataset of symptoms and
signs may help us understand the progress of the
disease, visualize the connecting links to comorbid con-
ditions, andevenappraise the extent of underlyingpath-
ology when integrated with accumulating data from
biomedical research.

The network approach may be particularly benefi-
cial in understanding comorbidity between traditional
diagnostic categories of mental disorders that lack clear
boundaries. However, we argue that this approach can
be useful to uncover underlying shared features and
biological mechanisms between not only mental disor-
ders but also various comorbid conditions. In this
regard, we challenge the idea that the degree of separ-
ation between these two exemplars (lung cancer and
depression) is far less than assumed. In fact, after a
glance at major depression rates in lung cancer

Fig. 1. Lung cancer, a distinct entity, is the origin of its
signs and symptoms.

Fig. 2. Depression emerges from the dynamic interplay
between signs and symptoms in a network.

2 S. Guloksuz et al.
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Statistical analyses
To estimate the network structure of 120 psychiatric symptoms, our novel network analysis
technique eLasso (package ‘IsingFit’ in R) [23] was used. This technique is based on Ising mod-
els as used in physics and combines l1-reguralized logistic regression [24] with Bayesian neigh-
borhood selection [25–27] to identify symptom-symptom associations that define connections
in the network. Based on the estimated connection strengths between all psychiatric symptoms,
a weighted, undirected graph was visualized using package ‘qgraph’ in R [28]. Symptoms were
represented as nodes and associations between them as edges. Green edges represented positive
associations and red edges represented negative associations, while the thickness of edges indi-
cated the strength of associations. The layout of the graph was based on the Fruchterman-Rein-
gold algorithm, which iteratively computes the optimal layout so that symptoms with stronger
and/or more connections are placed closer to each other [29].

Results
Study sample
In our sample of 34,653 adults, 58.0% were female and the mean age was 49.1 (SD = 17.3)
years. S1 Table shows the prevalence rates (N, %) of all individual psychiatric symptoms.

The general network structure
The empirical network structure of the 120 psychiatric symptoms is presented in Fig 1,
which is based on the estimated connection strengths between all 120 individual symptoms

Fig 1. Empirical network of 120 psychiatric symptoms. Symptoms are represented as nodes and associations between them as edges. Node colours
refer to the type of diagnosis and numbers refer to specific symptoms (see S1 Table). Green edges represent positive associations and red edges represent
negative associations, while the thickness of edges represent the strength of associations.

doi:10.1371/journal.pone.0137621.g001

The Network Structure of Symptoms of the DSM

PLOSONE | DOI:10.1371/journal.pone.0137621 September 14, 2015 5 / 12

Boschloo et al., 2015

- methodological difficulties (replication, stability, strong assumptions…)

- weak rationale for “pure” symptom networks (compare with physical disorders)

- large-scale results: not too different from DSM structure… 



Current answer 3: Transdiagnostic models
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Laceulle et al., 2015

4  Laceulle et al.
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Fig. 1.� The structure of psychopathology. Three models were tested using confirmatory factor analysis: a correlated-factors model (Model A), a hierarchical or bifactor model (Model 
B), and a 1-factor model (Model C). Model Bc shows the final revised hierarchical model. Colored ovals represent latent (unobserved) continuous symptom trait factors; colored 
boxes represent observed symptom counts for each disorder at each assessment age. The following 11 disorder/symptoms were assessed: alcohol dependence, cannabis dependence, 
dependence on hard drugs, tobacco dependence, conduct disorder, major depression, generalized anxiety disorder, fears/phobias, obsessive-compulsive disorder, mania, and posi-
tive and negative schizophrenia symptoms. Disorder/symptoms were assessed at ages 18, 21, 26, 32, and 38 years (not all disorders were assessed at every age, but each disorder was 
measured at least three times; missing assessments are depicted by white space). Gray ovals represent method/state factors designed to pull out age- and assessment-related variance 
(e.g., interviewer effects, mood effects, and age-specific vulnerabilities) that was uncorrelated with trait propensity toward psychopathology. Note: Alc = alcohol; Can = cannabis; Drg = 
hard drugs; Tob = tobacco; CD = conduct disorder; MDE = major depression; GAD = generalized anxiety disorder; Fears = fears/phobias; OCD = obsessive-compulsive disorder; Schiz = 
schizophrenia.
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Caspi et al., 2014

Caspi et al. (2014): a “p factor” for psychopathology 

low IQ, neural integrity 
low agreeableness 
low conscientiousness 
high neuroticism 
childhood adversity 
low SES

- about 40% heritable 
- found in phenotypic  
and genetic correlations 

components. The first principal component accounted for
57, 43, 35 and 22% in family, GCTA, LDSC and GPS data,
respectively. (For proportion of variance explained by the
other unrotated principal components, see Supplemen-
tary Table S4.)
Figure 3 shows first unrotated principal component

loadings of all psychopathological traits for the four
genetic methods. The loadings on the first unrotated
principal component mirrored the genetic correlations
(Fig. 1): the average loadings were 0.75 for family data,
0.58 for GCTA, 0.57 for LDSC and 0.44 for GPS. We were
able to test the statistical significance of loadings in family
and GPS analyses, and found that all traits significantly
loaded on the first unrotated principal component (all p-
values ≤ 1.65 × 10−41), even though the GPS data showed
some of the lowest loadings. When we applied the con-
ventional threshold of ≥|0.30|, we found that most of the
loadings met this threshold: 100% of the disorders in
family data, 80% in GCTA data, 88% in LDSC data, and
75% in GPS data. The variation in factor loadings across
the four methods can be explained by the inclusion of
different disorders, as average loadings for the disorders in
common were highly similar (family= 0.70; GCTA=
0.69; LDSC= 0.66; GPS= 0.53).

Schizophrenia, Bipolar, and Depression consistently had
the highest loadings on the first unrotated principal
component across all genetic approaches with the
exception of the GPS method, where Bipolar was not
amongst the highest loading disorders.

Sensitivity analyses using LDSC and GPS data
To test whether GPS results changed when applying a

different prior as part of the GPS calculation, we re-ran
PCA using GPS based on the fraction of causal markers of
0.10. Results were almost identical (see Supplementary
Table S5).
Furthermore, it is possible that low GPS loadings were

attributable to insufficient statistical power, rather than a
lack of true effects. Therefore, we re-ran PCAs using
LDSC and GPS data based on superceded GWA study
summary statistics with smaller sample sizes, where pos-
sible (see Supplementary Table S6 for sample informa-
tion). Although we found a slight reduction in the
variance explained by the first principal component in
LDSC data (34 vs 35%), the effect was more pronounced
in the GPS data (19 vs 22%). Additionally, average GPS
loadings on the first principal component decreased from
0.44 to 0.37, and only 50% of the disorder GPS met the
loading threshold of ≥|0.30| . These analyses suggest that
as GWA study sample sizes increase, the magnitude of
factor loading effect sizes on a genetic p factor will
approach those derived from family studies.

Factor rotation solutions
Based on the criteria described in the Methods section,

we retained two principal components for rotation for
family, GCTA and GPS data, and three principal com-
ponents for LDSC data (for more details, see Supple-
mentary Table S4). However, to improve comparability of
the rotated factor solutions across the four genetic
methods, we kept two principal components for the LDSC
data. Results of the rotation of three components for
LDSC data can be found in Supplementary Table S7.
Figure 4 lists the loadings for the first two rotated fac-

tors after performing oblique rotation. Rotated factor
loadings for all methods (family, GCTA, LDSC, GPS)
show that Schizophrenia and Bipolar Disorder con-
sistently load highly onto the same factor, together with
Depression in the family and GCTA data. This is expected
from the higher genetic intercorrelations between these
traits for all methods (Fig. 1). For the remaining psy-
chiatric traits, results were less consistent when compar-
ing family data to genomic data (GCTA, LDSC, GPS). In
part, this reflects the traits included—most notably, a
Drug Abuse/Crime factor emerged from the family data
because, unlike the other datasets, Drug Abuse, Alcohol
Abuse and Violent Crime were included and created the
first rotated factor. Anxiety also contributed to both

Fig. 2 Scree plot showing eigenvalues for each principal component
after performing PCA on correlation matrices for four genetically
sensitive methods: family analysis, Genome-wide Complex Trait
Analysis (GCTA), Linkage-Disequilibrium Score Regression (LDSC) and
Genome-wide Polygenic Scoring (GPS). The dashed line represents
the cut-off for principal component retention based on the Kaiser’s λ
> 1 criterion28

Selzam et al. Translational Psychiatry �(2018)�8:205� Page 5 of 9

Selzam et al., 2018



Markon, 2010a; McNulty & Overstreet, 2014; Sellbom, in press;
Sellbom, Ben-Porath, & Bagby, 2008).

Validation of Spectra

Although structural evidence can help to identify new diagnostic
entities, such constructs require further validation against criteria
important for clinical practice and research. The APA Diagnostic
Spectra Study Group reviewed evidence for five potential psycho-
pathology spectra with regard to 11 validators that may be shared
by, or at least be similar across, disorders within a spectrum:
genetic risk factors, familial risk factors, environmental risk fac-
tors, neural substrates, biomarkers, temperamental antecedents,
cognitive or emotional processing abnormalities, illness course,
treatment response, symptoms, and high comorbidity within the
spectrum (Andrews et al., 2009). This metastructure project ex-
amined internalizing/emotional (consisting of DSM–IV anxiety,
depressive and somatoform disorders, and neurasthenia), disinhib-
ited externalizing (conduct, antisocial personality, and substance-
related disorders), thought disorder/psychotic (schizophrenia
spectrum disorders, schizotypal PD, and bipolar I disorder), neu-
rocognitive (delirium, dementias, amnestic and other cognitive
disorders), and neurodevelopmental (learning, motor skills and
communication disorders, pervasive developmental disorders, and
mental retardation) spectra. Overall, data for validators included in
the reviews generally supported the coherence of these five spectra
(Andrews, Pine, Hobbs, Anderson, & Sunderland, 2009; Carpenter
et al., 2009; Goldberg, Krueger, Andrews, & Hobbs, 2009;
Krueger & South, 2009; Sachdev, Andrews, Hobbs, Sunderland, &
Anderson, 2009), and more recent reviews have continued to
support these conclusions (Beauchaine & McNulty, 2013; Eaton,

Rodriguez-Seijas, Carragher, & Krueger, 2015; Nelson, Seal,
Pantelis, & Phillips, 2013).
However, this evidence has some caveats. In particular, bipolar

disorder showed clear differences as well as similarities with both
schizophrenia and emotional disorders (Goldberg, Andrews, &
Hobbs, 2009). Also, validation data were relatively sparse for
somatoform disorders and neurasthenia, and thus it was difficult to
validate their distinctness from—or similarity to—the internaliz-
ing spectrum. Conversely, neurocognitive and neurodevelopmen-
tal clusters have not been examined in structural studies, but
validity evidence was considered sufficient for inclusion of these
entities as classes in the DSM–5. Overall, the HiTOP model covers
the majority of psychopathology, even though it is not yet com-
prehensive.

Hierarchy Above Spectra

The HiTOP spectra are positively correlated (Achenbach &
Rescorla, 2003; Kotov, Chang, et al., 2011; Krueger & Markon,
2006; Markon, 2010a; Røysamb et al., 2011), and these associa-
tions are consistent with the existence of a general psychopathol-
ogy factor or p factor (Caspi et al., 2014; Lahey et al., 2011, 2012).
This possibility has been supported by studies that evaluated a
bifactor model, which is composed of a general dimension defined
by all forms of psychopathology and specific dimensions defined
by smaller groups of disorders (Caspi et al., 2014; Laceulle,
Vollebergh, & Ormel, 2015; Lahey et al., 2011, 2012, 2015; Olino
et al., 2014).
Another approach recognizes that a range of factors can be

deliniated to represent different levels of the hierarchy, and most,
if not all, levels are meaningful (Goldberg, 2006; Markon et al.,

Figure 2. Spectra of the Hierarchical Taxonomy of Psychopathology. Note: Dashed lines indicate elements of
the model that were included on provisional basis and require more study. Disorders with most prominent
cross-loadings are listed in multiple places. Minus sign indicates negative association between histrionic
personality and detachment spectrum. See the online article for the color version of this figure.
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9QUANTITATIVE CLASSIFICATION

Kotov et al., 2017 (HiTOP model)

- powerful description of  large-scale structure

- explicit links with normal personality variation

- largely inductive: symptom/syndrome correlations

- ignores heterogeneity within disorders
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The view from evolution

 

 
Dysfunctional mechanisms 

 

Harmful dysfunctions 
(narrow-sense disorders) 

 
 

 
 

 
Functional mechanisms 

 
 

 
Currently maladaptive 

(population level) 
 

[May also cause dysfunctions]  
 

Evolutionary mismatches 
 
 

 
Currently adaptive 
(population level) 

 

 
Adaptive outcomes 

(individual level) 
 

Antisocial, exploitative,  
or socially devalued strategies 

 

Aversive defenses 
 

Self-sacrificial adaptations 
 

Other consequences of  
health-fitness trade-offs 

 
 

 
Maladaptive outcomes 

(individual level) 
 

[May also cause dysfunctions]  
 

Developmental mismatches 
 

Maladaptive learning 
 

Maladaptive outcomes of  
high-risk strategies 

 

Maladaptive outcomes of 
evolutionary conflicts 

 

Errors in defense activation 
(false positives/negatives) 

 

Other consequences of  
design constraints and trade-offs 

 
 

 
Undesirable conditions 

(broad-sense disorders) 

Del Giudice (2018) 
Del Giudice & Ellis (2016)

- lack of  integration among models of  specific symptoms/disorders

- no models of  comorbidity, large-scale structure of  mental disorders

- few connections with developmental psychopathology and psychiatric genetics

Many key insights but also limitations: 
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A life history perspective
7

The basic problem: resource allocation (energy, time…) among competing components of  fitness

- somatic effort (growth, tissue repair, immunity…) vs. reproductive effort (mating, parenting) 
- mating vs. parenting effort 
- current vs. future reproduction 
- quantity vs. quality of  offspring (survival, growth, mating potential)…

Dangerous,  
unpredictable 
environments 

Stable,  
predictable 

environments 



 

 
Fast 

 
Slow 

+ Impulsivity, risk-taking, sensation seeking 
   Precocious, unrestricted sociosexuality 
− Long-term orientation; unstable attachments 
− Affiliation, cooperation, affective empathy 
− A, C, H 
 
 

Prosocial/caregiving 

Skilled/provisioning 

+ Mechanistic cognition 
+ Perceptual/rotation ability 
− Affiliation 
− A, O (imagination) 
 

Antagonistic/exploitative 

Seductive/creative 

+ Mentalistic cognition 
+ Verbal ability, verbal and/or artistic creativity 
− Aggression 
+ O (imagination) 
 

Basic model 

Extended model 

− Impulsivity, risk-taking, sensation seeking 
   Delayed, restricted sociosexuality 
+ Long-term orientation; stable attachments 
+ Affiliation, cooperation, affective empathy 
+ A, C, H 
 
 

Del Giudice (2018)

Life history trade-offs shape development and behavior  
(e.g., Belsky et al., 1991; Del Giudice, 2009, 2014; Figueredo et al., 2005, 2006, 2009; Réale et al., 2010)
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Fast-slow continuum as a functional organizing principle of  individual differences:

 
 
 
  

Schizophrenia spectrum* 

Fast spectrum 
disorders 

 

Slow spectrum 
disorders 

 

Externalizing  

OCD:  
autogenous obsessions 

Eating disorders: 
perfectionist profile 

overcontrolled profile Eating disorders: 
dysregulated profile 

Autism spectrum* 
 

Depression/GAD** 
Mood + somatic symptoms Depression/GAD** 

 

OCPD 
 

Bipolar spectrum 

BPD 

ADHD*  

OCD: 
reactive obsessions 

From individual differences to psychopathology (Del Giudice, 2014):



Life history-related 
traits

1. Adaptive traits may be regarded as symptoms 
 - exploitative strategies (e.g., psychopathy) 
 - aversive but adaptive defenses (e.g., anxiety)

2. Adaptive traits may be expressed at maladaptive levels 
 - genetic + environmental factors 
 - assortative mating

3. Adaptive strategies may yield individually maladaptive outcomes 
 - maladaptive learning 
 - errors in defense activation (“smoke detector principle;” Nesse, 2001, 2005)

4. Adaptive traits may increase vulnerability to dysfunctions 
 - e.g., deleterious mutations, pathogens, chronic stress…

Regulation of  
defensive mechanisms

(anxiety, fear, 
 disgust…)

Disorder 
outcomes

Multiple etiological  
pathways

9



Human LH strategies: an extended model

Innovation 1: dual status hierarchies

Innovation 2: Multi-generation resource transfer

(−nurturance/agreeableness)

Del Giudice (2018). Evolutionary psychopathology: A unified approach. OUP.

Differentiated behavioral/cognitive profiles within fast and slow strategies

Creativity, courtship skills 
(+openness/imagination)

Technical skills 
“systemizing” 

(−openness/imagination)

dominance  
vs.  

prestige

Indirect parental investment 
extended provisioning 

wealth inheritance

10



(strategic profiles)

 

 
Fast 

 
Slow 

+ Impulsivity, risk-taking, sensation seeking 
   Precocious, unrestricted sociosexuality 
− Long-term orientation; unstable attachments 
− Affiliation, cooperation, affective empathy 
− A, C, H 
 
 

Prosocial/caregiving 

Skilled/provisioning 

+ Mechanistic cognition 
+ Perceptual/rotation ability 
− Affiliation 
− A, O (imagination) 
 

Antagonistic/exploitative 

Seductive/creative 

+ Mentalistic cognition 
+ Verbal ability, verbal and/or artistic creativity 
− Aggression 
+ O (imagination) 
 

Basic model 

Extended model 

− Impulsivity, risk-taking, sensation seeking 
   Delayed, restricted sociosexuality 
+ Long-term orientation; stable attachments 
+ Affiliation, cooperation, affective empathy 
+ A, C, H 
 
 

[Psychopathy]

[Narcissism, schizotypy] [Autistic-like traits]

High OT activity Low OT activity
High default mode activity (DMN) Low default mode activity (DMN)

Higher 5-HT activityLower 5-HT activity

(+ DA activity, sex hormones, stress physiology…)

11



	 	 	 	 	
	

Slow spectrum 
disorders 
(S-type) 

Fast 
 

Slow 
 

Fast spectrum 
disorders 
(F-type) 

Defense activation disorders 
(D-type) 

Antagonistic/exploitative 

M > F 

Seductive/creative 

Prosocial/caregiving 

Skilled/provisioning 

F > M 

F ≥ M 

M ≥ F M > F 

Intense and/or prolonged defense activation 

- F-type, S-type, D-type: broad clusters of  comorbidity with similar functional correlates

- D-type disorders: may occur at both ends of  the continuum (but more frequently with F-type)

Sex differences  
in risk patterns

More common in high-stress contexts  
(low SES, traumatic events…)

More common in low-stress contexts  
(high SES, stable environment…)

Especially common in high-stress contexts

High neuroticism 
Low GABAergic activity 

Amygdala size/activation

12
The FSD model

Del Giudice (2018)



	 	 	 	 	
	

S-type F-type 

 ASPD, CD, ODD 
 

SSDs 
F-BDs 
NPD 

BPD 
F-ADHD 
F-EDs 

 
S-ASD 

S-ADHD 

 S-EDs 
 

S-BDs 
OCPD 
S-OCD 

	Seductive/ 
creative 

Antagonistic/ 
exploitative 

Skilled/ 
provisioning 

Prosocial/ 
caregiving 

D-type 

Depression (MDD, PDD) 
GAD 

 
PTSD 

 
D-OCD 

 
Specific phobias 

Panic, agoraphobia 
SAD, APD 

Fear cluster 

Distress cluster 

O-ASD 
O-ADHD 

 

Psychosis spectrum
Narcissistic PD

Antisocial/conduct

Borderline PD

Eating disorders [subtype]

ADHD [subtype]

Autism spectrum [subtype]
Obsessive-compulsive PD

OCD [subtype]

Eating disorders [subtype]

ADHD [subtype]

(Bipolar subtype?)

Depression

Panic, phobias

Generalized anxiety

PTSD

OCD [subtype]

13
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DSM categories in the FSD model:



Example 1: eating disorders

Sexual competition model (Abed, 1998; Ferguson et al., 2011)

- robust associations with intrasexual competitiveness, mating motives

- thinness as cue of  youth and reproductive potential
- social/cultural factors promote runaway competition for thinness

Limitations:  
- historical/cross-cultural evidence of  moral, ascetic motives (Keel & Klump, 2003) 
- evidence of  status competition + perfectionism in AN symptoms (Faer et al., 2005)

Multiple mechanisms, multiple motivations

	 	 	 	 	
	

Bingeing- 
purging 

cycle 

Food restriction 
Exercise 

 

Starvation 
response 

Bingeing 

Purging 

Self-starvation 
cycle 

	

Weight  
loss 

Weight concerns 

Involuntary  
weight loss 

  
Other motives 

 

BN 

AN-BP AN-R 

Del Giudice (2018)

Bingeing-purging and self-starvation  
as common final pathways for ED symptoms  
(Fessler, 2002; Dwyer eat al., 2011)
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Fast spectrum EDs (F-EDs) 
 
 
 Undercontrolled subtype 
 

High N; low A, C 
Impulsivity, sensation seeking, aggression 
 
Comorbidity: F-ADHD, F-BDs, BPD, NPD, 

ASPD, depression, GAD, PTSD 
 

Overcontrolled subtype 
 

High C, N 
Perfectionism, OC personality traits 

 
Comorbidity: S-ASD, S-ADHD, OCPD, 

depression, GAD, SAD, APD 
 

Slow spectrum EDs (S-EDs) 
 
 
 High-functioning subtype 

 
High A, C; low N 

Empathy, self-sacrifice 
Prosocial/caregiving 

 
Low comorbidity (APD, OCPD) 

BN AN-BP AN-R 

FSD classification: two main functional subtypes

- differential associations with socioeconomic status, maturation timing, + other risk factors

Del Giudice (2018)
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- neurobiological implications: e.g., 5-HT is low in BN and acute AN, but high in recovered AN  
  (slow trait marker vs. transient side effect of  starvation)

- subsumes ED personality subtypes (Westen & Harnden-Fischer, 2001; Thompson-Brenner et al., 2005, 2008)



Example 2: the autism spectrum

	 	 	 	 	
		

Non-imprinted genes 
Environmental factors 

 

Psychosis  
spectrum 

 

Autism 
spectrum 

 

Paternally  
expressed 

genes 

Maternally 
expressed 

genes Conflict 

Hyper-mechanistic cognition 
Enhanced visuospatial skills 
Literalness, low imagination 
Restricted attentional focus 

Early overgrowth, larger brain  Mutation load, environmental insults 
 

Hyper-mentalistic cognition 
Poor visuospatial skills 

Imagination, magical thinking 
Reduced salience filtering 

Early undergrowth, smaller brain  

Diametrical model of  autism/psychosis (Crespi & Badcock, 2008; Crespi et al., 2010)

- cognitive development in autism: delays, maintenance of  childhood-typical traits (Crespi, 2013)

- byproduct of  recent selection for visuospatial skills/problem solving? (Crespi, 2016)

- genetic associations with higher IQ (Clarke et al., 2016; Hagenaars et al., 2016)

- roles for rare deleterious mutations (especially: low IQ) AND common genetic variants (high IQ)

16
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Del Giudice et al. Autistic-like and schizotypal traits

FIGURE 2 | Standardized path diagram of the selected model. For clarity of 
presentation, variances, disturbances, and measurement errors are omitted. The 
effects of sex (italicized) are reported as standardized differences between 

males and females (d ). Individual paths that were statistically significant in the 
unstandardized solution (p  � 0.05) are drawn with thick lines. Legend: nt = not 
tested for significance (fixed loading).

specifically to different aspects of mating strategies. In particular, 
AQ-interpersonal scores predicted reduced mating effort, whereas 
AQ-detail scores predicted increased long-term investment. On 
the contrary, positive schizotypy was negatively associated with 
long-term investment and positively associated with mating effort 
(Figure 2). Of special interest was the finding that, despite the 
substantial empirical overlap between the interpersonal facet of 
autistic-like traits and negative schizotypy, the latter had no inde-
pendent effects on mating strategies. This finding underlines the 
need for improved, “cleaner” measures of schizotypal and autistic-
like traits. It also strongly suggests that, even when investigating only 
one type of trait, the best procedure is to measure both autistic-like 
traits and schizotypy and model their unique effects after control-
ling for their statistical overlap.

CONCLUSION
In this paper we presented a new hypothesis on the evolution of 
autistic-like and schizotypal personality traits. Specifically, we 
explored the fitness-enhancing potential of autistic-like traits in the 
context of long-term mating strategies in humans, and advanced 
the hypothesis that both autistic-like and schizotypal traits have 
an evolutionary history of sexual selection through mate choice. 
We then proposed an intriguing connection between our sexual 
selection hypothesis and the dynamics of genomic imprinting, by 
recasting the imprinted brain theory in the context of the GKT. 
Our initial predictions concerning the effects of autistic-like and 
schizotypal traits on mating strategies were empirically supported, 
providing a first line of support to our argument and opening up 
a fascinating avenue for future research.

analysis. The resulting model fit can be expected to be less 
than perfect; however, this strategy provides a more strin-
gent test of the hypothesized model structure, and reduces 
the risk of capitalizing on chance (discussed in Burnham and 
Anderson, 2002).

Some of the variables (i.e., age, MSOI-LTMO, MSOI-behavior, 
PSI-focus, SPQ-positive and SPQ-negative) showed substantial 
departures from normality; since maximum-likelihood estima-
tion is sensitive to distributional assumptions, these variables 
were log-transformed with added constants before model fitting 
in order to eliminate skew. Additionally, some of the variables were 
multiplied by appropriate constants to avoid ill-scaling of the cov-
ariance matrix. All statistical analyses were carried out in R 2.8.0 
(R Development Core Team, 2008) with the following packages: 
sem 0.9–13 (Fox, 2008), reldist 1.5–5 (Handcock, 2006), and psych 
1.0–57 (Revelle, 2008).

The selected model is shown in Figure 2. Fit indices were sat-
isfactory (C( ) . ,34

2 79 06�  p � 0.05; RMSEA = 0.081; CFI = 0.917). 
Females had lower AQ-interpersonal scores, but there were no 
sizable sex differences in schizotypy (again, it should be remem-
bered that the present study was not based on a demographically 
representative sample). Sex also had direct effects on both mating 
effort (F � M) and long-term investment (F � M), thus confirming 
previous literature findings. Older participants had lower scores in 
schizotypy and in the interpersonal facet of autistic-like traits.

As hypothesized, autistic-like traits predicted reduced mating 
effort and higher long-term investment in romantic relationships. 
Interestingly, different facets of autistic traits appeared to contribute 

Del Giudice et al. (2010, 2014)

Autistic-like traits 

+ long-term mating motivation 
− short-term mating motivation 
+ moral/sexual disgust 

− impulsivity, risk-taking 

+ conscientiousness 
− extraversion 
− openness (imagination) 
− agreeableness 
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High-functioning ASD, normal/high IQ 

Slow spectrum ASD (S-ASD) 
 

Severe ASD, intellectual disability 

M >> F 
 

High autistic-like traits in relatives 
Major role of common alleles 

Weaker association with parental age 
 

Longer interpregnancy intervals 
Brain/head overgrowth 

M ≥ F 
 

Unrelated to autistic-like traits in relatives 
Major role of rare/de novo mutations 

Stronger association with parental age 
 

Shorter interpregnancy intervals 
Inconsistent growth patterns 

O-type ASD (O-ASD) 
 

FSD classification: overlapping subtypes

Autistic-like traits as slow LH variant  
(skilled/provisioning profile)

Early overgrowth, long interpregnancy interval:  
high maternal investment

S-ASD: gradient from adaptive to maladaptive 
(overexpression, cliff-edged fitness?)

O-ASD: pure harmful dysfunction 
(driven by rare mutations)

Just one of  several “extreme male brains!” 
(Baron-Cohen, 2003)
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FSD model vs. standard transdiagnostic model

Why the differences?

- many DSM disorders contain functionally distinct subtypes (not considered in the standard model)

- standard factor analysis misses nonlinear associations (e.g., D-type disorders elevated at both ends)

- some subtypes are functionally unrelated to personality variation (e.g., most severe ASD cases)

	 	 	 	 	
	 	 	 	 	 	 	

S-type 
 

F-type 
 

D-type 

Internalizing 

Externalizing Autism 
spectrum 

Thought  
disorders 

BPD* 
F-EDs 
F-BDs* 

O-ADHD O-ASD S-ADHD 

SSDs 
F-BDs* 

S-OCD* 
S-BDs* 

S-OCD* 
S-EDs 
S-BDs* 

S-ASD 
ASPD, CD, ODD 

F-ADHD 
BPD* 

Depression 
GAD 
PTSD 

Specific phobias 
Panic  

Agoraphobia 
SAD, APD 
D-OCD* 
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4  Laceulle et al.
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S-type 
 

F-type 
 

D-type 

Internalizing 

Externalizing 

1

Autism 
spectrum 

Thought  
disorders 

2

p factor = 
Fast LH (low A, low C, impulsivity) 
+ defense upregulation (high N) 
+ low cognitive ability (low IQ)

Low IQ 
Neurological impairment

20

What is the p factor?

A unitary p factor may emerge from functionally (and statistically!) independent dimensions of  variation 



Simulation study: Del Giudice (2016)
21
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this study12 were based on a non-hierarchical approach to
classification, thus allowing for greater overlap among the
disorders.
GPS results, which are based on the most conceptually

distinct method, yielded the lowest overall correlations. A
GPS is the aggregation of all genetic effects found in an
independent GWA analysis in respect to an individual’s
genotype. Therefore, GPS correlations index the extent to
which the total variance of individuals’ GPS for one trait
covaries with GPS for other traits. Two possible reasons
why GPS correlations may be the lowest are that (i) in
addition to true effects, a GPS includes the measurement
error for all the SNPs tested across the genome in GWA

analysis and (ii) a GPS is generated using genotypes from
one cohort and effect sizes from a second, independent
cohort.
What causes this genetic p factor? The positive mani-

fold of the genetic p factor is agnostic about its causes.
There are several, equally plausible hypotheses for the
mechanisms that cause cross-disorder correlations37. One
possible pathway may be biological pleiotropy, where
DNA variants are causally involved in the development of
several traits related to psychopathology. An alternative
explanation is mediated pleiotropy, in which comorbidity
occurs because DNA variants increase risk for one dis-
order, and then this disorder causes other disorders in

Fig. 4 Rotated factor loadings for the four types of genetic data. RF rotated factor based on oblique (Oblimin) rotation, GCTA Genome-wide Complex
Trait Analysis, LDSC Linkage-Disequilibrium Score Regression, GPS Genome-wide Polygenic Score, SCZ Schizophrenia, BIP Bipolar Disorder, MDD Major
Depressive Disorder, ASD Autism Spectrum Disorder, ADHD Attention-Deficit/Hyperactivity Disorder, ANX Anxiety, OCD Obsessive-Compulsive
Disorder, AN Anorexia Nervosa, PTSD Post-Traumatic Stress Disorder; Drug= Drug Abuse; Alcohol= Alcohol Abuse; Crime= Convictions of Violent
Crimes

Selzam et al. Translational Psychiatry �(2018)�8:205� Page 7 of 9

when split into two factors…

Selzam et al., 2018

components. The first principal component accounted for
57, 43, 35 and 22% in family, GCTA, LDSC and GPS data,
respectively. (For proportion of variance explained by the
other unrotated principal components, see Supplemen-
tary Table S4.)
Figure 3 shows first unrotated principal component

loadings of all psychopathological traits for the four
genetic methods. The loadings on the first unrotated
principal component mirrored the genetic correlations
(Fig. 1): the average loadings were 0.75 for family data,
0.58 for GCTA, 0.57 for LDSC and 0.44 for GPS. We were
able to test the statistical significance of loadings in family
and GPS analyses, and found that all traits significantly
loaded on the first unrotated principal component (all p-
values ≤ 1.65 × 10−41), even though the GPS data showed
some of the lowest loadings. When we applied the con-
ventional threshold of ≥|0.30|, we found that most of the
loadings met this threshold: 100% of the disorders in
family data, 80% in GCTA data, 88% in LDSC data, and
75% in GPS data. The variation in factor loadings across
the four methods can be explained by the inclusion of
different disorders, as average loadings for the disorders in
common were highly similar (family= 0.70; GCTA=
0.69; LDSC= 0.66; GPS= 0.53).

Schizophrenia, Bipolar, and Depression consistently had
the highest loadings on the first unrotated principal
component across all genetic approaches with the
exception of the GPS method, where Bipolar was not
amongst the highest loading disorders.

Sensitivity analyses using LDSC and GPS data
To test whether GPS results changed when applying a

different prior as part of the GPS calculation, we re-ran
PCA using GPS based on the fraction of causal markers of
0.10. Results were almost identical (see Supplementary
Table S5).
Furthermore, it is possible that low GPS loadings were

attributable to insufficient statistical power, rather than a
lack of true effects. Therefore, we re-ran PCAs using
LDSC and GPS data based on superceded GWA study
summary statistics with smaller sample sizes, where pos-
sible (see Supplementary Table S6 for sample informa-
tion). Although we found a slight reduction in the
variance explained by the first principal component in
LDSC data (34 vs 35%), the effect was more pronounced
in the GPS data (19 vs 22%). Additionally, average GPS
loadings on the first principal component decreased from
0.44 to 0.37, and only 50% of the disorder GPS met the
loading threshold of ≥|0.30| . These analyses suggest that
as GWA study sample sizes increase, the magnitude of
factor loading effect sizes on a genetic p factor will
approach those derived from family studies.

Factor rotation solutions
Based on the criteria described in the Methods section,

we retained two principal components for rotation for
family, GCTA and GPS data, and three principal com-
ponents for LDSC data (for more details, see Supple-
mentary Table S4). However, to improve comparability of
the rotated factor solutions across the four genetic
methods, we kept two principal components for the LDSC
data. Results of the rotation of three components for
LDSC data can be found in Supplementary Table S7.
Figure 4 lists the loadings for the first two rotated fac-

tors after performing oblique rotation. Rotated factor
loadings for all methods (family, GCTA, LDSC, GPS)
show that Schizophrenia and Bipolar Disorder con-
sistently load highly onto the same factor, together with
Depression in the family and GCTA data. This is expected
from the higher genetic intercorrelations between these
traits for all methods (Fig. 1). For the remaining psy-
chiatric traits, results were less consistent when compar-
ing family data to genomic data (GCTA, LDSC, GPS). In
part, this reflects the traits included—most notably, a
Drug Abuse/Crime factor emerged from the family data
because, unlike the other datasets, Drug Abuse, Alcohol
Abuse and Violent Crime were included and created the
first rotated factor. Anxiety also contributed to both

Fig. 2 Scree plot showing eigenvalues for each principal component
after performing PCA on correlation matrices for four genetically
sensitive methods: family analysis, Genome-wide Complex Trait
Analysis (GCTA), Linkage-Disequilibrium Score Regression (LDSC) and
Genome-wide Polygenic Scoring (GPS). The dashed line represents
the cut-off for principal component retention based on the Kaiser’s λ
> 1 criterion28

Selzam et al. Translational Psychiatry �(2018)�8:205� Page 5 of 9

Polygenic p factor
ASD dissociates 

(common alleles)

cross-loadings 
for AN
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In conclusion…

A life history approach may help overcome fragmentation in 
evolutionary psychopathology

Potential for deeper integration with behavior genetics, 
individual differences, computational models
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and then used these predictions to systematically characterize the 
developmental and functional features of the molecular phenotype of 
autism (Fig. 1). Our predictions provide researchers with a diverse set 
of ASD candidate genes in the context of the underlying brain-specific 
network, thus enabling further understanding of autism genetics.

Genome-wide prediction of autism risk genes
We constructed a gene-interaction network model containing  
predicted functional relationships for all pairs within 25,825 genes in 
the human genome in the context of specific human tissues, including  
the brain21. The brain-specific network uses a Bayesian method  
that extracts and integrates brain-specific functional signals from 
thousands of gene expression, protein–protein interaction and  
regulatory-sequence data sets (Online Methods).

We developed an evidence-weighted, network-based machine-
learning method that uses this brain-specific network to systemati-
cally discover new candidate ASD risk genes across the genome. We 
first curated 594 genes linked with autism from a number of pub-
licly available databases before 2014, ranging from high-confidence 
genetic associations (for example, SFARI Gene, http://gene.sfari.org) 
to automatically text-mined ASD-gene co-occurrences in published 
abstracts (for example, Gene2Mesh, http://gene2mesh.ncibi.org/). 
We grouped these genes into four evidence levels (E) based on the 
strength of evidence associating them with ASD (Supplementary 
Table 1). Using these genes along with their evidence levels as positive 
gold-standard examples and genes annotated to non-mental-health 
diseases as negative examples, we trained an evidence-weighted sup-
port vector machine classifier using the connectivity of these gold-
standard genes to all the genes in the human brain-specific network 
as features (Fig. 1 and Online Methods). The classifier first identifies 
network patterns that differentiate known ASD-related genes (taking  
into account the level of ‘trust’ in each gene’s association with autism) 
from other disease genes. It then identifies new ASD candidates 
as those genes whose interaction patterns in the network highly 
resemble those of known ASD-related genes (Supplementary Fig. 1  
and Supplementary Table 2). This approach produces a compre-
hensive, robust genome-wide ranked list of autism candidate genes 
(Supplementary Table 3 and Supplementary Fig. 2). To improve the 
interpretability of these ASD risk gene predictions, we also estimated 

probabilities and permutation-based P-values (and corresponding 
false discovery rate Q-values) for each gene (Supplementary Fig. 3 
and Online Methods).

Evaluating only held-out high-confidence (E1) genes through  
five-fold cross-validation, we found that our approach was accurate 
(area under the receiver–operator curve (AUC) = 0.80, Wilcoxon 
rank-sum test, P = 1 × 10−6; Fig. 2a). Moreover, this evidence-
weighted classifier, trained using genes in evidence levels E1–E4, 
significantly outperforms an unweighted classifier trained using only 
high-confidence E1 genes (AUC = 0.73, P = 2 × 10−4), a weighted 
classifier trained using only E1 and E2 (AUC = 0.76, P = 2.7 × 10−5), 
and a weighted classifier trained using E1 and E2 supplemented with 
random genes that match E3 and E4 in annotation, expression, and 
gene-length characteristics (AUC = 0.74, P = 1 × 10−4). This compari-
son unequivocally establishes that including lower-confidence genes 
(E3 and E4) in an evidence-weighted framework helps in significantly 
improving performance (Fig. 2a). Thus, although individual genes in 
these lower-confidence sets (E3 and E4) are not validated (a substan-
tial fraction may not be found to be associated with ASD), as a unit 
they still contain informative signals that our computational approach 
effectively leverages to improve ASD risk gene prediction.

In addition to computational evaluation by cross-validation, we 
performed a systematic empirical evaluation based on results from 
an external exome-sequencing study of 2,517 families7. We focused 
on de novo likely-gene-disrupting (LGD; also known as loss-of- 
function) mutations identified in these families with one child 
with autism (proband), and, in most cases, an unaffected sibling 
(Supplementary Table 4). Genes harboring LGD mutations in 
probands were significantly enriched toward the top of our rank-
ing (permutation test, P = 2.3 × 10−5; Online Methods); this enrich-
ment was even more pronounced for targets of recurrent proband 
LGDs (mutations found more than once among children with 
autism), which are highly likely to be true autism-associated genes 
(P = 1 × 10−5). In contrast, enrichment was absent for genes with 
LGD mutations in unaffected siblings (P = 0.081), showing that 
our predictions specifically rank LGDs related to autism over those 
potentially unrelated to the disease (Fig. 2b). For further analysis, 
we focused on the top decile of predicted ASD risk genes (median 
false discovery rate < 0.025), which closely reflected the above 
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Figure 1 Genome-wide prediction of  
autism-associated genes. Our ASD-gene 
predictions are based on a machine learning 
approach that (1) uses a gold standard of  
known disease genes, those linked to autism 
with varying levels of evidence (E1–E4) as 
positives and other genes linked to non- 
mental-health diseases as negatives, in  
the context of (2) a human brain-specific 
functional interaction network to (3) build  
an evidence-weighted, network-based  
classifier capturing autism-specific gene 
interaction patterns and (4) predict the 
probability of autism association of each 
gene across the genome. We demonstrated 
the accuracy and utility of our genome-wide 
complement of autism-associated genes  
by (5) validating these predictions with  
de novo autism-associated mutations  
from an independent sequencing study, 
elucidating the spatiotemporal developmental 
gene-expression patterns of top-ranked autism-
associated genes, laying out the landscape of autism-associated brain-specific functional modules (network clusters) and prioritizing candidate causal 
genes within large intervals of recurrent autism-associated copy-number variants.
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Fig. 1.� The structure of psychopathology. Three models were tested using confirmatory factor analysis: a correlated-factors model (Model A), a hierarchical or bifactor model (Model 
B), and a 1-factor model (Model C). Model Bc shows the final revised hierarchical model. Colored ovals represent latent (unobserved) continuous symptom trait factors; colored 
boxes represent observed symptom counts for each disorder at each assessment age. The following 11 disorder/symptoms were assessed: alcohol dependence, cannabis dependence, 
dependence on hard drugs, tobacco dependence, conduct disorder, major depression, generalized anxiety disorder, fears/phobias, obsessive-compulsive disorder, mania, and posi-
tive and negative schizophrenia symptoms. Disorder/symptoms were assessed at ages 18, 21, 26, 32, and 38 years (not all disorders were assessed at every age, but each disorder was 
measured at least three times; missing assessments are depicted by white space). Gray ovals represent method/state factors designed to pull out age- and assessment-related variance 
(e.g., interviewer effects, mood effects, and age-specific vulnerabilities) that was uncorrelated with trait propensity toward psychopathology. Note: Alc = alcohol; Can = cannabis; Drg = 
hard drugs; Tob = tobacco; CD = conduct disorder; MDE = major depression; GAD = generalized anxiety disorder; Fears = fears/phobias; OCD = obsessive-compulsive disorder; Schiz = 
schizophrenia.
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The FSD model successfully reproduces the large-scale 
structure of  mental disorders
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The framework provides the foundation for an 
alternative classification system
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